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Abstract. We investigate properties of ultralong-range polyatomic molecules formed with a Rb Rydberg
atom and several ground-state atoms whose distance from the Rydberg atom is of the order of n2a0, where
n is the principle quantum number of the Rydberg electron. In particular, we put emphasis on the splitting
of the energy levels, and elucidate the nature of the splitting via the construction of symmetry-adapted
orbitals.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states – 32.80.Pj Optical cooling
of atoms; trapping – 31.15.Md Perturbation theory

1 Introduction

The recent advancement of ultracold physics has made
possible the study of many interesting phenomena, rang-
ing from the formation of molecules in a Bose-Einstein
Condensate (BEC) [1–3] to correlation effects in ultracold
neutral plasmas [4,5], where in the former case the atoms
are cooled to temperature in the nano-Kelvin range. Com-
bined with narrow bandwidth lasers and high resolution
spectroscopy [6], new phenomena can be studied involv-
ing high-lying Rydberg states which have a narrow spac-
ing in energy of the order of 10 GHz. One such example
is the theoretical prediction of the formation of ultralong-
range dimers by a Rydberg atom and a nearby ground-
state atom [7], the so-called “trilobite” molecules. The
potential well supporting the vibrational bound states is
extremely weak compared to typical ground-state mole-
cules. The depth of well is ∼15 GHz for n = 30, where
n is the principle quantum number of the Rydberg atom,
and scales as n−3. The long-range nature of such system,
bound at the equilibrium distance of the order of 103 a.u.,
is rather unusual as well as the oscillatory feature at the
bottom of the potential well. This class of ultralong-range
dimers should be distinguished from another kind, due
to the Rydberg-Rydberg interaction [8], whose molecular
resonance was observed in the experiments [9,10].

In this paper we address the question if more than one
ground-state atom can form, together with the Rydberg
atom, a polyatomic molecule. We find, that shape and
symmetry of such polyatomic molecules follow a system-
atics which is well understandable on the one hand side
in terms of trilobite building blocks, that is, linear com-
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binations of wavefunctions which describe the Rydberg
atom and a single ground-state atom. From a more global
perspective, these polyatomic molecules can be classified
according to irreducible representations reflecting their
symmetry properties, as it is well known in quantum
chemistry.

So far, trilobites have not been identified experimen-
tally. As the experimentally achieved density of ultracold
atomic ensembles increases [11], so does the likelyhood
of detecting such molecular species. However, there are
still open questions concerning the realizability of such a
molecule under current experimental conditions. For ex-
ample, the Rydberg electron is very likely to interact with
multiple ground-state perturbers, and it is not so clear at
first sight what the role of the Rydberg states is. Such
scenarios will also concern the proposed “dipole block-
ade” scheme for quantum information processing [12].
The characterization of polyatomic molecules involving
one Rydberg and several ground-state atoms helps to un-
derstand the possible role of such ground-state perturber
better.

Technically speaking, we extend the calculations done
by Greene, Dickinson and Sadeghpour [7] to include mul-
tiple ground-state atoms using the Fermi pseudo-potential
treatment. More sophisticated methods exist [13,14], but
the results do not differ much, whilst the qualitative fea-
tures are certainly captured which suffice for the purpose
of the present article. Using the Fermi pseudo-potential
also allows one to calculate easily a large system.

We investigate, in particular, the effect of placing the
perturbers in a structured environment on the splitting of
the adiabatic energy levels of the molecular system. We
will use group theory to obtain the total wavefunction of
the system in the framework of first-order perturbation
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theory via the construction of the symmetry-adapted or-
bitals. For the sake of clarity we restrict the investigation
to atoms all lying in a plane (whereas the Rydberg elec-
tron of course lives in the physical 3D space). Atomic units
are used unless stated otherwise.

2 The Hamiltonian

First, we consider a ground-state atom with label i located
at distance Ri from the Rydberg atom. The ground-state
atom influences the electron by its polarization field, which
has the form −α/2r4, where α is the atomic polarizabil-
ity. For Rb atoms, the experimentally determined value is
α = 319.2 [15]. To a good approximation, the potential
— extremely short-ranged with respect to the extension
of a Rydberg electronic wavefunction — can be mimiced
by the Fermi pseudo-potential, namely [16],

V̂i = 2πL[ki]δ(r − Ri). (1)

where L[ki] ≡ −(tan δs)/ki is the s-wave energy-dependent
scattering length of the Rydberg electron colliding with
a neutral atom; k2

i /2 = −1/2n2 + 1/Ri its kinetic en-
ergy, and r its distance from the mother ion. The s-wave
phase shift δs can be calculated using the modified effec-
tive range theory by O’Malley et al. [17] and the zero-
energy scattering length for triplet s-wave calculated by
Bahrim et al. [18]. The singlet scattering length is much
smaller, and hence we do not expect it to influence the
phenomena discussed here.

In the case of Rb atoms, the quantum defect is negli-
gible for high l-states (l � 3), which are quasi-denergate.
They are therefore well represented by hydrogenic wave-
functions. The low-l states, on the other hand, split
away from the n-manifold and do not interact with the
high-l states provided that the energy-dependent scatter-
ing length is sufficiently small. The high-l states are also
more interesting, because the Hilbert space is larger in this
case, which produces a more flexible system, i.e. the dif-
ferent eigenstates are allowed to interfere with each other.
This results in a highly-polarizable complex. In this paper,
we consider only the high-l class.

The total Hamiltonian of the Rydberg electron inter-
acting with its mother ion and N ground-state atoms can
be written as

Ĥ = Ĥ0 + V̂N , (2)

where the ionic Hamiltonian is

Ĥ0 =
p̂2

2
− 1
r
. (3)

The potential VN is the N -fold sum over the interaction
(Eq. (1)) with all ground-state atoms, i.e.,

V̂N = 2π
N∑

i=1

L[ki]δ(r − Ri), (4)

where i labels the ith ground-state atom, and N is the
total number of ground-state atoms.

The effect of p-wave electron scattering was neglected
in our calculation, however, in the dimer case it was stud-
ied by Hamilton et al. [19] and Khuskivadze et al. [14].

3 Determination of adiabatic energy curves

Under the adiabatic approximation, the energy levels cal-
culated from the Hamiltonian Ĥ (including the perturba-
tion) give, automatically, the electronic structure of the
molecular system involving N + 1 atoms. We determine
a cut through the Born Oppenheimer (BO) potential sur-
face for systems with N = 2, 3, and 4 ground state atoms
which are uniformly placed on a circle with radius R cen-
tered at the Rydberg core. These three cases correspond
to linear, triangular, and square geometries, respectively.
The cut we choose corresponds to the breathing mode, i.e.
R is varied. We calculate the BO curves using two meth-
ods: (i) the direct diagonalisation of Ĥ; and (ii) the projec-
tion operator method [20] to construct symmetry-adapted
orbitals and determine the BO curves from standard per-
turbation theory. Both methods are accurate, but the lat-
ter gives a deeper insight into the quantum mechanical
properties such as the energy degeneracy.

The Fermi pseudo-potential is usually valid for
n � 25–30. For smaller principle quantum numbers, the
scattering of e− + Rb and the polarization of the neutral
perturber by the Rydberg atomic core are not independent
of each other [21]. Here, we present calculations for n = 30,
which also allows us to compare our results directly with
that previously obtained for the Rb2 dimer [7,14].

The eigenvalues from the unperturbed Hamiltonian,
Ĥ0, yields simply the hydrogenic energy E0 = −1/2n2,
so for convenience we set this to be zero throughout this
article.

4 Collinear triatomic molecule (N = 2)

Consider two ground-state atoms (A and B) placed on
either side of a Rydberg atom with distances R forming
a collinear triatomic molecule. This configuration corre-
sponds to N = 2, and the numerical result of the BO
curves are plotted in Figure 1.

In order to understand the splitting of the energy lev-
els, we use the perturbed state |ψn(r)〉 when only one
of the two ground-state atoms is present as the build-
ing block for constructing the total electronic wavefunc-
tion. The perturbed state can be can be explicitly written
as [22]

|ψn(r)〉 =
∑

q

φ∗nq(R)|φnq(r)〉, (5)

where the index q runs over all the degenerate states which
includes all l’s and m’s with l ≥ 3. We call this wave-
function the “trilobite” wavefunction since it produces the
probability density like that drawn in reference [7]. The
two wavefunctions, which clearly satisfy the parity of the
collinear geometry, are

|ψ+(r)〉 = |ψA
n (r)〉 + |ψB

n (r)〉, (6)
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Fig. 1. Adiabatic energy curves for the linear diatomic (dot-
ted line) and triatomic molecule (solid lines) as a function of
distance R between Rydberg and ground-state atoms, see also
the sketch for the triatomic molecule with the Rydberg atom
in the middle. The solid lines are the results from diagonaliza-
tion, and the points (+) and (◦) are the energy expectation
values calculated from the symmetry-adapted orbitals equa-
tions (6) and (7), respectively. The E = 0 lies at the energy of
the n = 30 manifold.

and
|ψ−(r)〉 = |ψA

n (r)〉 − |ψB
n (r)〉, (7)

where the superscript A and B are the labels of the
ground-state atoms; |ψA

n (r)〉 and |ψB
n (r)〉 are the trilo-

bite wavefunctions when only atom A or B is present. By
choosing the projection axis ẑ so that it aligns with the in-
ternuclear axis, the only degenerate states that contribute
are those with non-zero value along ẑ. They are in this
case the states with m = 0.

Using the above ansatz to calculate the expectation
value 〈V̂N 〉 yields immediately two energies E+ and E−,
which are distinguished by their parities:

E±(R) = L[k]
n−1∑

l=3

(2l + 1)|unl(R)|2
{
l = even for E+,

l = odd for E−,

(8)

where L[k] = L[kA] = L[kB], R = |RA| = |RB| and unl is
the radial part of the hydrogenic wavefunction φnl(R) =
unl(R)Ylm(θ, ϕ).

Hence, we see that, with the inclusion of the second
perturber, two curves split away from the n-manifold,
with one corresponding to gerade and the other to unger-
ade symmetry. They both converge at large distance to
the curve when only one ground-state atom is present.
However, they split from each other approximately within
R/rn ≤ 1 (with rn = n2 = 900), which can be seen from
the sum of the probability densities of even-l and odd-l
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Fig. 2. Sum of probability densities
∑

l |φnl(R)|2 for states
with even and odd angular momentum components l as a func-
tion of the radial distance.
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Fig. 3. (Color online) Cut of the electronic probability den-
sity along the internuclear axis at the deepest point of the
potential well, R = 879. The black contour lines show the
probability density of the trilobite (diatomic) wavefunction,
and the background coloured plot is for the N = 2 (collinear
triatomic) configuration. The ground-state atoms are located
at (x, z) = (0,±879) and the Rydberg atom at (0, 0). The two
white solid lines show the classical Kepler ellipses.

states. They differ when the overlap 〈ψB
n |ψA

n 〉 is not ex-
ponentially small, see Figure 2. This feature is general for
all principle quantum numbers. The additional splitting
also suggests that the system can be more stable with the
inclusion of more than one neutral perturber, a situation
we will investigate in more detail in Section 5.

In Figure 3, we show the contour plot of the probabil-
ity density of the diatomic and triatomic systems at the
interatomic distance Rm = 879, which corresponds to the
deepest potential energy. The special minimum configura-
tion can be most clearly identified by means of the clas-
sical Kepler orbits along which the two trilobite states of
the molecule are scarred (see also Ref. [23]). Each Kepler
ellipse has one ground-state atom in one of its foci and
touches the other ground-state atom.
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Fig. 4. Illustration of the geometry of the (a) C3,v and (b) C4,v

configurations. The dashed lines are the planes of reflection.
The shaded and the solid circles are the ground-state and the
Rydberg atoms respectively.
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Fig. 5. The three adiabatic energy curves gi for a triangular
configuration as a function of Rydberg–ground state atomic
distance R (see Fig. 4a). The coding of the data is analogous
to Figure 1.

5 Planar polyatomic molecules of triangular
and quadratic shape (N = 3, 4)

For N ≥ 3, we choose ẑ to be perpendicular to the plane
containing the atoms. Figure 4 illustrates the spatial ge-
ometry of the complexes. The degenerate states that con-
tribute, i.e., the index q in equation (5), are the states
with l + m being an even integer, exclusive of l = 0, 1, 2
states. The results are shown in Figure 5.

For the N = 3 case, three energy eigenvalues split away
from the n-manifold, and as in the case of N = 2, beyond
rn they converge to the BO curve for the dimer case. Note,
however, that two of the energy levels are degenerate at
any given distance within rn, indicating that there are
additional symmetries preserved under the perturbation of
the ground-state atoms. To elucidate these symmetries, we
again use the trilobite state as basis functions to construct
the relevant symmetry-adapted orbitals. But unlike in the
previous collinear configuration, where taking account of
the parity as the relevant symmetry is intuitive, we have to

Table 1. Character tables of the irreducible representations of
(a) C3,v and (b) C4,v [25]. The labeling follows the conventional
rules.

(a)

E 2C3 3σv

Γ1 1 1 1
Γ2 1 1 –1
Γ3 2 –1 0

(b)

E C2 2C4 2σv 2σd

Γ1 1 1 1 1 1
Γ2 1 1 1 –1 –1
Γ3 1 1 –1 1 –1
Γ4 1 1 –1 –1 1
Γ5 2 –2 0 0 0

use a systematic approach for N = 3 or larger. A method
which has been used extensively to find the symmetry-
adapted orbitals is the projection operator method, which
is expressed mathematically as [20]

g =
lj
h

∑

R̂

χ∗
j (R̂)ÔRf , (9)

where ÔR is the operator for a particular symmetry oper-
ation R̂, e.g., rotation or reflection, etc. The lj and χj are,
respectively, the dimension and the character of the jth
irreducible representation (irrep) of the symmetry group,
to which the system belongs, while h is the order of the
group. The sum extends over all symmetry operations in
the group. This equation allows us to find the symmetry-
adapted functions {gi} from any original basis set {fi}.
The general proof of this procedure can be found, for ex-
ample, in Section 6.6 of reference [24].

The name of this procedure originates from the fact
that the pre-factor in front of f in the above equation can
be viewed as a projection operator that projects the basis
set {fi} into a basis set {gi} that diagonalizes the Hamil-
tonian matrix. In other words, g and f in equation (9) are
vectors, and the operator

P̂Γ ≡ lj
h

∑

R̂

χ∗
j (R̂)ÔR (10)

can be represented by a unitary matrix.
The configurations of N = 3 and 4 correspond to the

symmetry groups C3,v and C4,v, and their character tables
of the irreducible representations are shown in Table 1.

We find that in the N = 3 case, the representation of
the symmetry operations using the trilobite state as the
basis set contains only two of the total three irreducible
representations, Γ1 and Γ3 (see Tab. 1a and Appendix A.1
for details), which are one- and two-dimensional respec-
tively. The symmetry-adapted orbitals constructed will
then, according to the fundamental theory of quantum
mechanics, consist of a non-degenerate and two degener-
ate states. They are, respectively, g1, g2 and g3 shown ex-
plicitly in equations (16), (17a) and (18) in Appendix A.1.

The energy expectation values,

〈V̂N (R)〉gi ≡ 〈gi|V̂N (R)|gi〉, (11)
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Fig. 6. Same as Figure 5, but for a square geometry with a
ground-state atom at each corner (see Fig. 4b) with four energy
curves gi, see text.

calculated using the gi-functions i = 1, 2, 3 are plotted
in Figure 5. As expected, the two curves belonging to Γ3

overlap with each other at all distances R. Note that ap-
plying P̂Γ2 onto any of the basis functions produces zero,
which is a general feature when the irrep is not contained
in the overall representation.

The same analysis for the C4,v symmetry reveals that
the overall representation contains Γ1, Γ3, and Γ5 (see
Tab. 1b), with the first being one-dimensional, and the sec-
ond and the third two-dimensional (see Appendix A.2 for
detail). Hence, there are two sets of doubly-degenerate BO
curves and a non-degenerate one. Applying equation (9),
we obtain the symmetry-adapted orbitals gi, i = 1, 2, 3, 4
as shown in equations (22)–(25) in Appendix A.2. The
adiabatic energy levels from the analytical and numerical
results are plotted in Figure 6. Again, the graph shows a
perfect agreement between the two results.

6 Conclusion

We have used the Fermi pseudo-potential to model the ef-
fect neutral Rb ground-state atoms have on a Rydberg
electron. Cuts through the resulting potential surface,
adiabatic in the distance of the ground-state perturbers
from the ionic core of the Rydberg electron, have been
calculated for different arrangements of the ground-state
atoms which form planar polyatomic molecules. We found
that more ground-state atoms lead to more deeply bound
molecules compared to the original diatom as studied by
Greene and coworkers [7]. A systematic understanding
of the structure and symmetry of such molecules can be
gained by taking the trilobite (diatomic) wavefunction as
a basic unit and constructing symmetry-adapted orbitals
as demonstrated in Sections 4 and 5. For two ground-state
atoms the procedure is relative simple and intuitive, while
three or more ground-state atoms require a systematic ap-
proach, such as the projection operator method.

In the case where N is larger than the number of de-
generate states qmax, our method of constructing the per-
turbed wavefunction should still work, and will yield only
qmax linearly independent states.

The effect of p-wave electron scattering plays an im-
portant role especially in hydrogen-like atoms. Our calcu-
lations can be extended into the case of higher partial wave
scattering by using the appropriate pseudo-potentials
formulated by Omont [22]. Previous studies [14,19] for
dimers show that the potential curve of the p-wave scat-
tering crosses the potential well at R ≈ 1200, and could
potentially destabilize the trilobite while also providing
additional potential wells. It will be also interesting to see
how the spatial arrangement of the atoms affect the energy
of the system in this process, since the potential is now
dependent on the gradient of the electronic wavefunction
in the 3D space.

The present work is a first exploration of the possibil-
ity to form polyatomic molecules from a single Rydberg
atom and a number of ground-state atoms. We have only
determined a cut (at equal distances of the ground-state
atoms to the Rydberg atom) through the multidimen-
sional potential surface which resembles the potential for
the breathing mode of the molecule. Future analysis and
realistic assessment of the quantitative features of such
species must include the vibrational motion of the atoms.

Appendix A: Derivation
of the symmetry-adapted orbitals

A.1 Planar polyatomic molecule with N = 3

The molecule formed in this configuration has the symme-
try of the point group C3,v. Using trilobite states as the
basis set to construct the corresponding representation,
one obtains the following matrices,

ÔE =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ÔC1
3

=

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ (12a)

ÔC2
3

=

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ Ôσv1 =

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ (12b)

Ôσv2 =

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ Ôσv3 =

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ . (12c)

In the above notations, E is the identity; Cp
k denotes the

rotation about ẑ-axis by angle 2πp/k; and the σ’s are the
reflections through the planes perpendicular to the plane
of the atoms, as indicated in Figure 4a.

It is clear that when one of the above operators, say
ÔC1

3
, is applied on the original vector, the result is a 120◦

rotation about ẑ in the counter-clockwise direction, as-
suming that ẑ is pointing perpendicularly into the paper,
i.e. ⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠

⎛

⎝
ψA

n

ψB
n

ψC
n

⎞

⎠ −→
⎛

⎝
ψB

n

ψC
n

ψA
n

⎞

⎠ . (13)
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From equation (12), the character of the representation in
such basis set can be determined by taking the trace of
each matrix, and they are summarized in the table below:

E 2C3 3σv

Γtotal 3 0 1

Here, we have used Γtotal to denote the representation
formed by the trilobite states. By inspecting the character
table of the irreps of C3,v (Tab. 1a), one immediately sees
that the current representation is a direct sum of Γ1 and
Γ3, namely,

Γtotal = Γ1 ⊕ Γ3. (14)

Now, we determine the projection operators in each irrep
by using equation (10). The order of the group is h = 6,
and the dimensions for Γ1 and Γ3 are l1 = 1 and l3 = 2,
respectively. Equation (10) then yields

P̂Γ1 =
1
6

[
ÔE + ÔC1

3
+ ÔC2

3
+ Ôσv1 + Ôσv2 + Ôσv3

]
,

(15a)

P̂Γ2 =
1
6

[
ÔE + ÔC1

3
+ ÔC2

3
− Ôσv1 − Ôσv2 − Ôσv3

]
,

(15b)

P̂Γ3 =
1
6

[
2ÔE + ÔC1

3
+ ÔC2

3

]
. (15c)

Since Γtotal contains only Γ1 and Γ3, we need to apply
only equations (15a) and (15c) to our basis set in order to
obtain the symmetry-adapted orbitals. Acting the trivial
operator P̂Γ1 on the trilobite wavefunction |ψA

n 〉, we obtain
the first symmetry-adapted orbital

P̂Γ1fA = P̂Γ1 |ψA
n 〉 =

1
3

[|ψA
n 〉 + |ψB

n 〉 + |ψC
n 〉] ≡ g1. (16)

The same equations are obtained if one acts P̂Γ1 on |ψB
n 〉

or |ψC
n 〉 which are obviously linearly-dependent. However,

acting P̂Γ3 on |ψA
n 〉, |ψB

n 〉 and |ψC
n 〉 gives, respectively,

P̂Γ3 |ψA
n 〉 =

1
6

[
2|ψA

n 〉 − |ψB
n 〉 − |ψC

n 〉] ≡ g2, (17a)

P̂Γ3 |ψB
n 〉 =

1
6

[
2|ψB

n 〉 − |ψC
n 〉 − |ψA

n 〉] , (17b)

P̂Γ3 |ψC
n 〉 =

1
6

[
2|ψC

n 〉 − |ψB
n 〉 − |ψA

n 〉] . (17c)

Since Γ3 is a three-dimensional irrep, two of the above
equations can be combined, by subtracting equation (17b)
by (17c), giving

1
6

[|ψB
n (r)〉 − |ψC

n (r)〉] ≡ g3, (18)

so that finally we have three linearly-independent wave
functions, which we call g1, g2 and g3.

A.2 Planar polyatomic molecule with N = 4

Following the same procedure as in the case of N = 3,
one finds the matrices of the symmetry operations in the

point group C4,v in the present basis set as,

ÔE =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠ ÔC1
2

=

⎛

⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟⎠ (19a)

ÔC1
4

=

⎛

⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟⎠ ÔC3
4

=

⎛

⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟⎠ (19b)

Ôσv1 =

⎛

⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎠ Ôσv2 =

⎛

⎜⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞

⎟⎠ (19c)

Ôσd1 =

⎛

⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎠ Ôσd2 =

⎛

⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎠ (19d)

where the notations are as before, and the planes of re-
flections are indicated in Figure 4b.

The character of Γtotal can again be determined by
taking the trace of each matrix above, and they are:

E C2 2C4 2σv 2σd

Γtotal 4 0 0 2 0

Again, from the character table of the irrep (Tab. 1b), one
finds that the representation Γtotal is a direct sum of

Γtotal = Γ1 ⊕ Γ3 ⊕ Γ5. (20)

Hence, we know that in this representation there are two
one-dimensional and one two-dimensional irreps. Their
corresponding projection operators can be obtained by
applying equation (10), where in this case, h = 8, and
l1, l3 and l5 are 1, 1 and 2, respectively. Therefore, the
projection operators are

P̂Γ1 =
1
8
[ÔE + ÔC1

2
+ ÔC1

4
+ ÔC2

4

+ Ôσv1 + Ôσv2 + Ôσd1 + Ôσd2 ], (21a)

P̂Γ3 =
1
8
[ÔE + ÔC1

2
− ÔC1

4
− ÔC2

4

+ Ôσv1 + Ôσv2 − Ôσd1 − Ôσd2 ], (21b)

P̂Γ5 =
1
4

[
ÔE − ÔC1

2

]
. (21c)

The symmetry-adapted orbitals can then be obtained in a
similar way as in Appendix A.1, which yields the following
four linearly-independent equations:

g1 =
1
4

[|ψA
n (r)〉 + |ψB

n (r)〉 + |ψC
n (r)〉 + |ψD

n (r)〉] , (22)

g2 =
1
4

[|ψA
n (r)〉 − |ψB

n (r)〉 + |ψC
n (r)〉 − |ψD

n (r)〉] , (23)

g3 =
1
4

[|ψA
n (r)〉 − |ψC

n (r)〉] , (24)

g4 =
1
4

[|ψB
n (r)〉 − |ψD

n (r)〉] . (25)
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